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Approximate equations are derived for the slow variation in amplitude of free 
oscillations ab  the inertial frequency in a slightly stratified ocean. In  an ocean of 
constant depth with horizontally uniform stratification the evolution equation 
for waves of small vertical mode number can be reduced to a Schrodinger equa- 
tion, with the increment in Coriolis parameter playing the role of the potential. 
An exact solution of the Schrodinger equation is presented which demonstrates 
the transience of inertial oscillations. 

- 

1. Introduction 
An almost universal feature of horizontal current measurements in the ocean 

is a rotating current with frequency close to the inertial frequency f, and a speed 
of several centimetres per second. The vertical and lateral scales of these oscilla- 
tions range from IOm and IOkm respectively (Webster 1968) to 200m and 
1OOOkm (R. T. Pollard, private communication). In  view of the strength and 
widespread occurrence of inertial oscillations, one might; expect that their 
horizontal and vertical structure could readily be determined from current 
measurements. Unfortunately, this is not the case, because the amplitude and 
structure are found to vary markedly on a time scale as short as tien periods 
(Webster 1968). Moreover, a change in the wind strength or direction produces 
new waves a t  the inertial frequency which tend to mask the original waves. 

Transience would then seem to be a major characteristic of inertial oscilla- 
tions. Estimates of the turbulent decay rate for internal waves of the inertial 
frequency give time scales of the order of 100 inertial periods (LeBlond 1966). 
Thus the transience of the oscillations is due to more subtle mechanisms. Munk & 
Phillips (1968) examine the solution for periodic inertio-gravity waves in a 
shallow ocean of constant depth on a rotating sphere. The wave energy is 
essentially confined between two latitudes, either side of the equator, for which 
the waves are of inertial frequency. Close to these critical latitudes, not only is 
there a caustic of the ray paths, but also the group velocity is small and the wave 
amplitudes are at their largest. Thus Munk & Phillips suggest that inertial 
oscillations are gravity waves at  a ‘turning latitude’ and that the transience 
is due to the wave energy being slowly propagated towards the equator. However, 
they show that neither of the two extreme models of homogeneous random 
sources and local coherent generation can separately account for the observed 
rate of transience. Another mechanism which can explain transience even in 
small seas is the phase mixing of a large number of wave modes (Hasselmann 
1970). For the Baltic and Mediterranean, respectively, Hasselmann (1970) and 
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Perkins (1972) have shown that this explanation yields decay rates in reasonable 
agreement with observations. The related effect of wavelength dispersion was 
considered by Pollard (1970), but he found that the predicted decay rate was too 
small t o  explain transience in an open ocean. We speculate that wavelength 
dispersion may be the dominant mechanism for a long narrow sea of small 
north-to-south extent (see $ 3 ) .  

In  the present paper, we are concerned with the mathematical question of de- 
termining an equation, incorporating all the above-mentioned mechanisms, which 
governs the slow evolution of the amplitude of inertial oscillations. The major 
mathematical tool that is used is the method of multiple time scales (Cole 1968), 
a short time scale describing the rotation of the horizontal current and a long 
time scale describing the transience. In  organizing the calculations we are guided 
by the observed properties of the oceans and of inertial oscillations. For example, 
use is made of the fact that the Brunt-Vaisala (or buoyancy) frequency N is 
large relative to f, and also that the vertical scale of the waves is considerably 
less than their horizontal scale. 

For the idealized case of waves with small vertical mode number in an ocean 
which has horizontally uniform stratificabion, constant depth and a barotropic 
mean current the evolution equation can be reduced to a Schrodinger equation, 
with the increment in f plus half the current vorticity playing the role of the 
potential. Thus, the leakage of wave energy towards the equator is equivalent to 
reflexion at  a potential barrier, and a strong current can act as a potential well. 

2. Equations and boundary conditions 
The linearized Boussinesq equations of motion for a stratified inviscid fluid 

are given in Phillips (1966, chap. 2). These, together with the boundary conditions 
for a free surface at  z = 0 and a rigid 'bottom topography' z = - D(x) ,  can be 
combined into the form 

a + 2 ( Q ~ k ) ~ ( V , , q )  = 0 on z = 0 ( I b )  

and q =  0 on z = - D ( x ) ,  ( Ic )  
wheref, is the value of the Coriolis parameter at  the origin of the chosen co- 
ordinate system, k is the vertical unit vector, x the horizontal position vector, 
N ( x , z )  the buoyancy frequency, D ( x )  the water depth, Q the horizontal com- 
ponent of the earth's angular velocity vector, V, the horizontal gradient operator, 
and q is the vertically integrated horizontal current, i.e. 
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The choice of q as dependent variable is particularly convenient if we wish to 
study the effect of horizontal variations in D,  f or N .  We note that - V ,  . q is the 
vertical velocity component, and it is this fact, and not (1 c ) ,  that corresponds to 
the rigid-bottom boundary condition. 

If we let L and H denote typical length and depth scales for waves of inertial 
frequency, then for mid-latitudes we can estimate the ratio of the groups of 

L N 2 H 2  H H2 terms in ( la)  as 
I:-.-- . .  

R e f :  L2'z'p' 

where R is the earth's radius and JV is a representative value of the buoyancy 
frequency. (For waves which are concentrated near the thermocline, a natural 
choice for JV would be the maximum value of N ( x ,  x ) ,  however, for other classes 
of waves the mean value of N may be a more meaningful choice.) Typical values 
for scales of inertial frequency cscillations are 

L = 100km, H = loom, M/fo = 50, 

and the ratio of the groups of terms in ( 1  a) is then estimated as 

1: 1.5 x 10-2: 2.5 x 10-3: 10-3: 10-6. 

Thus in ( 1  a)  the first group of terms is dominant and a first approximation for q 
yields the well-known result that the horizontal current rotates clockwise in the 
northern hemisphere : 

u = = a[a cos f a  t - k x a sinf, t]/2z,  (2) 

where a is an undetermined function of (x , z )  and can vary slowly with time. 
I n  order to determine the possible spatial dependence of a and its slow evolu- 

tion in time, we must examine higher approximations to (la). A self-consistent 
theory for waves with small vertical mode number can be developed if the last 
two groups of terms in (1 a) are neglected, that is if the effects of S2 and of vertical 
accelerations are both neglected. Since, if H greatly exceeds R( f/~+'-)~,  typically 
1 m, then for all values of L either the buoyancy term or the f-fo term will 
dominate the neglected terms. However, we shall first consider the most com- 
plicated possibility, in which the second, third and fourth groups of terms in (1  a)  
are of the same small order. 

We define a small parameter E by 

8 =ff /M2 

and we non-dimensionalize the independent variables t ,  x and x with respect to 
and fo ,  s2R and ER respectively (typically 1 day, 1 m and 2.5 krn respectively). 
Likewise, we non-dimensionalize the physical parameters which occur in (1) : 

= (f -fO)/~fo, fi = N/Jlr,  = Q/fo, G = g / f S .  
I n  dimensionless form, equations (1) become 

2 2  + 2 ~ -  [V,(q . (a x k ) )  - fi x k (V ,  . q)] + E ~ V ,  [g V ,  . q] = 0, (3a) ax at 
F LM 
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a 2  
-GV,[V,.q]+~=[ykxq] 

a 
at 

+ 2 e ( 8  x k)- (V,. q) = 0 on z = 0 ( 3 6 )  

and q = 0 on z = - D ( x ) .  (3c) 

Next, we use an expansion (Cole 1968, chap. 3) 

q = q,(x, z , t ,  T) + Wl(X,  z, t ,  T) + * 2 

with two time variables t and T, which denotes the long time scale associated 
with the evolution of the inertial oscillations. The operator a/at is now replaced 
by a/at + E: a/aT. Extracting the lowest order terms from (3a) ,  we deduce that q,, 
is given by (2), or in dimensionless form 

q, =acos t -kxas in t .  

From the leading power of B in the boundary condition ( 3 b ) ,  it now follows that 
both V,&.a and V,. (k x a) are constant on the free surface. At a rigid coastline 
the component of q, normal to  the shoreline must be zero, and owing t o  the 
cyclic behaviour of q, we infer that a is zero on the shoreline. Using the divergence 
theorem we can deduce that, for a finite sea, a is identically zero on the free 
surface. For an infinite sea, we get the same result if we assume that the wave 
energy is finite. 

From the order E terms in ( 3 a )  we can derive the result 

a2q1/at2 = (a, + A) cost + (a,- A) x ksin t - Bt cos t - B x k t sint, 

where a, is undetermined, 

4A = V, x (m2Vh x a) + Vh(fi2V,. a) 
+2a{8x (V,xa)-d(V, .a)+(f i .V,)a+kx [(dxk).V,a])/az 

and 

B = - - + y k  x a + i k  x (V,(82V,.a) -V, x (m2V, x a)} 
a22 Y aT 1 

+ a{( (d x k) . V,) a + k x ((a. 0,) a) - (8 x k) (V, .a) - 8 ( k .  (V, x a)))/&. 

For simplicity, derivatives of d have been neglected in these expressions. 
If q, is to be a uniformly valid approximation to q then it is necessary that 

eql remains small for all time. This is possible only if B is zero, Reverting to the 
dimensional co-ordinates, this requirement means that a must evolve according 
to the equation 

a 2  aa 1 
- (- + (f-f,) k x a) +g k x (V,(N2Vh. a) - V, x (N2Vh x a)) 
8 x 2  at 

+ a{[@ x k) . V,]a + k x [(Q . V,) a] - (Q x k) (V, .a)  - Q[k. (V, x a)]}/az = 0. 

(4) 

It can be shown that if we were to use any other scaling, then we would derive 
an equation of the same form as (4) except that certiain terms would be omitted. 
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For example, if H = &R and L = s8R (typically 200m and 40km) then both 
the f - fo and the 51 terms would be omitted. 

The above calculation procedure can readily be adapted to include additional 
physical effects. For the particular case of an ocean current, we can estimate 
a priori that, if the horizontal speed exceeds foH (at most 1 em s-l), then the S2 
terms in (4) are smaller than the ignored terms due to the horizontal current. 
The appropriate modification t o  (4) is the inclusion of the extra terms 

where U and W respectively are the horizontal and vertical components of the 
current velocity. We note that if the horizontal current greatly exceeds @Rf, 
then it is justifiable to neglect the S2 terms, since, for all values of H and L, there 
will be at  least one term in the extended version of (4) which will greatly dominate 
the !2 terms. 

3. Reduction to Schrodinger’s equation 
The evolution equation (4) is much too complex to be studied analytically. 

Thus to make further progress we must either resort to numerical calculations 
or make additional simplifications. Here, we choose the latter alternative and 
assume that S2 can be ignored, U is depth independent, N 2  is a function of z 
only and that the ocean depth is constant. Under these restrictions, (4) wikh the 
zero boundary conditions can be solved by a vertical eigenfunction expansion: 

a = X (Re 9j, Im $j, 0)  q5j(z), 
j 

where the functions q5j satisfy the eigenvalue problem 

q5=0 on z = O , - D  

and the complex scalars $j evolve according to the Schrodinger equation 

1 
-+U.V, 9 = -cVi@+- (f-fo++k.(VhxU))@. fo i ( a  at ) 2 f o  ( 5 )  

For the particular case of a P-plane ocean that is bounded by lines of latitude 
and has zero current, we can, in principle, get an analytic solution to (5). Firs& 
we represent f as f,, + By and the initial data as 

25-2 
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where the horizontal eigenfunctions & with the corresponding eigenvalues p 
satisfy 

"+&(p-fy) t= dY2 0, 

( = O  on y = + L .  

The solution to (5) can then be represented as 

If only a few horizontal modes are strongly excited and 2 is used t o  denote a 
typical length scale for the initial data, then we can estimate that it takes a time 
of order ( 9 / A ) 2  inertial periods for the waves to reach the final algebraic decay 
rate of t-8. The damping is entirely due to wavelength dispersion which, in the 
quantum mechanics analogy, is a consequence of the uncertainty principle. 
However, if a large number of modes are excited, then it is more appropriate to 
regard the ocean as being of infinite north-to-south extent and to use what is 
essentially the solution of Munk & Phillips (1968): 

The final decay rate is now tf but we get the same estimate as before for the 
time taken to reach the asymptotic state. In  the quantum mechanics analogy 
the extra asymptotic rate of decay is due to the reflexion of waves away from 
regions of high potential, i.e. where f - fo  is large. 

For the oceans we can estimate that for the lowest mode h would typically be 
20 km and for the waves to have the observed transience scales of only ten inertial 
periods it is necessary that the initial data have a typical length scale of only 
60 km. For waves in an open ocean caused by atmospheric disturbances such 
a length scale is rather short and we are led to the same conclusion as was made 
by Pollard (1970). Namely, that it is probable that wind stress must be invoked 
to destroy as well as create inertial oscillations. 

4. Conclusion 
The primary object of bhis paper was to derive the equations (4) which govern 

the slow evolution of the amplitude of inertial frequency oscillations, using 
scaling assumptions appropriate to the oceans. This evolution equation includes 
the effects of the horizontal components of the earth's rotation vector and it is 
possible to determine circumstances under which it is justifiable to make the 
'traditional approximation ' and neglect these terms. For example, if the 
horizonbal current speed greatly exceeds Rf;1N4, typically cm s-l, then, for 
waves of any horizontal and vertical scales, the traditional approximation is 
justifiable. A major characteristic of inertial oscillations in the oceans is their 
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transience and a time-dependent solution to an idealized problem is presented 
which demonstrates that (4) can qualitatively describe transience. 

I am indebted to Dr M. E. McIntyre and Dr R. T. Pollard for their detailed 
comments, which led to substantial improvements in the paper. 

REFERENCES 

COLE, J-. D. 1968 Perturbation Methods in Applied Mathematics. Waltham, Mass.: 
Blaisdell. 

HASSELMANN, K. 1970 Wave driven inertial oscillations. Geophys. FZuid Dyn. 1, 463-502. 
LEBLOND, P. H. 1966 On the damping of internal gravity waves in a continuously 

MUNK, W. & PHILLIPS, N. 1968 Coherence and band structure of inertial motion in the 

PERKINS, H. 1972 Inertial oscillations in the Mediterranean. Deep Sea Res. 19, 289-296. 
PHILLIPS, 0. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press. 
POLLARD, R. T. 1970 On the generation by winds of inertial waves in the ocean. Deep Sea 

WEBSTER, F. 1968 Observations of inertial-period motions in the deep sea. Rev. Geophys. 

stratified ocean. J .  Fluid Mech. 25, 121-142. 

sea. Rev. Geophys. 6 ,  447-472. 

Res. 17, 795-812. 

6, 473-490. 


